Non-homogeneous dynamic Bayesian networks for continuous data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-stationary continuous dynamic Bayesian networks

Dynamic Bayesian networks have been applied widely to reconstruct the structure of regulatory processes from time series data. The standard approach is based on the assumption of a homogeneous Markov chain, which is not valid in many realworld scenarios. Recent research efforts addressing this shortcoming have considered undirected graphs, directed graphs for discretized data, or over-flexible ...

متن کامل

Bayesian regularization of non-homogeneous dynamic Bayesian networks by globally coupling interaction parameters

To relax the homogeneity assumption of classical dynamic Bayesian networks (DBNs), various recent studies have combined DBNs with multiple changepoint processes. The underlying assumption is that the parameters associated with time series segments delimited by multiple changepoints are a priori independent. Under weak regularity conditions, the parameters can be integrated out in the likelihood...

متن کامل

Non-stationary dynamic Bayesian networks

Structure learning of dynamic Bayesian networks provide a principled mechanism for identifying conditional dependencies in time-series data. This learning procedure assumes that the data are generated by a stationary process. However, there are interesting and important circumstances where that assumption will not hold and potential non-stationarity cannot be ignored. Here we introduce a new cl...

متن کامل

Inter-time segment information sharing for non-homogeneous dynamic Bayesian networks

Conventional dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption, which is too restrictive in many practical applications. Various approaches to relax the homogeneity assumption have recently been proposed, allowing the network structure to change with time. However, unless time series are very long, this flexibility leads to the risk of overfitting and inflated infe...

متن کامل

Continuous Multimodal Authentication Using Dynamic Bayesian Networks

In this paper we address the issue of post-login user verification using biometrics. We propose a general framework for continuously monitoring a user and his or her characteristics throughout the session in order to provide continuous verification of identity. We present a multimodal approach using dynamic Bayesian networks to account for classification uncertainty and to encode the system’s d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2011

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-010-5230-7